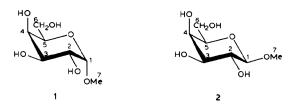
Note

Use of electron-nuclear relaxation-rates to determine ${\rm Mn^{2^+}\!-\!methyl}$ D-galactopyranoside interactions

MARSHA E. DAMAN AND KILIAN DILL*

Department of Chemistry, Clemson University, Clemson, SC 29631 (U.S.A.)

(Received March 14th, 1984; accepted for publication, April 5th, 1984)


We have previously employed the selective, line-broadening technique in order to gain information about the mode of interaction of such metal ions as Gd^{3+} and Mn^{2+} with N-acetyl- α -D-neuraminic acid¹ and the carbohydrate residues of oligosaccharides², glycoproteins², and glycopeptides³⁻⁵. Moreover, we have also utilized this technique in order to investigate the stereochemistry of the interactions of Gd^{3+} and Mn^{2+} with several synthetic D-gluconamides, which may be precursors for new, metal-ion chelating agents⁶.

The use of certain metal-ions, especially $\mathrm{Mn^{2+}}$, as selective, line-broadening agents for obtaining quantitative, distance information about specific, metal-ion-ligand structures has recently come into question, because the electron nuclear T_2^{e} (spin-spin) relaxation was, in some cases, shown to be dominated by a scalar relaxation mechanism. This would pose severe limitations on the use of the selective, line-broadening technique for gaining metal-ion-ligand, carbon-distance information, because the scalar contribution to T_2^{e} does not contain a simple, distance dependence^{7,8}. In order to gain a more concise picture of the metal-ion-ligand interaction, electron-nuclear T_1^{e} (spin-lattice) relaxation of ligand carbon atoms are measured, because the T_1^{e} relaxation is dominated by dipolar interaction between the carbon nucleus and the unpaired electrons of the metal ion, and this interaction contains an r^{-6} distance-dependence⁸.

It is because of the possible discrepancies that may exist in studying metalion-carbohydrate interactions by the two methods in question that we present herein the use of electron-nuclear relaxation rates $[(T_1^e)^{-1}]$ to determine the interactions of Mn²⁺ with methyl α -D-galactopyranoside (1) and methyl- β -D-galactopyranoside (2). These model compounds were chosen for the present studies because the selective, line-broadening technique had been employed in earlier studies dealing with the interactions of Mn²⁺ with glycopeptides containing α - and β -D-

^{*}To whom correspondence should be addressed.

336 NOTE

galactopyranose³⁻⁵. The results of the Mn²⁺ interaction with the model compounds from this study (monitoring ¹³C, T_1^e values) are similar to our previous studies dealing with the interactions of Mn²⁺ with α - and β -D-galactopyranose residues of various glycopeptides that used the selective line-broadening technique.

EXPERIMENTAL

Methyl α -D-galactopyranoside (1) and methyl β -D-galactopyranoside (2) were purchased from Sigma Chemical Co., St. Louis, MO. A stock solution of Mn²⁺ was prepared as previously described¹. Additions of the Mn²⁺ stock solution to the n.m.r. samples were made in μ L quantities, using an Eppendorf digital pipet.

 $^{13}\text{C-N.m.r.}$ spectra were recorded with a JEOL-FX90Q instrument, operated in the F.t. mode by the use of quadrature detection as described earlier 1 . Measurements of T_1 were made by using the partially relaxed, Fourier transform (p.r.F.t.) method (180– τ –90), with eleven τ values. Values of T_1 were calculated by using the linear, least-squares program provided by JEOL. Values of $(T_1^{\rm e})^{-1}$ were calculated from the relationship $(T_1^{\rm e})^{-1}=(T_1^{-1})_{\rm Mn^{2+}}-(T_1^{-1})_0$, where $(T_1^{-1})_{\rm Mn^{2+}}$ and $(T_1^{-1})_0$ are the inverse, spin–lattice relaxation-times, with and without added Mn²⁺, respectively.

RESULTS AND DISCUSSION

Figs. 1 and 2 show the linear, least-squares fit of our data for the effects of added $\mathrm{Mn^{2+}}$ on the nuclear-relaxation rates $[(T_1^{\mathrm{e}})^{-1}]$ of the various carbon atoms of \sim M solutions of 1 and 2. Assignments of the resonances in our spectra to specific carbon atoms were based on our published data for various D-galactopyranosides³⁻⁵. No corrections were made for possible outer-sphere relaxation contributions to the ¹³C, T_1^{e} values⁸.

In Figs. 1 and 2, the steepness of the slope of the line indicates the strongest $\mathrm{Mn^{2+}}$ interactions with the respective carbohydrate oxygen atoms. The concentration of $\mathrm{Mn^{2+}}$ needed (relative to M solutions of model compounds) to permit observation of the effects is such that the $\mathrm{Mn^{2+}}$ -D-galactopyranoside interactions must be considered weak⁸, and an outer-sphere process may contribute somewhat to the relaxation of the carbon nuclei. Fig. 1 shows that there are no great differences in the slopes pertaining to the effects of added $\mathrm{Mn^{2+}}$ on the $(T_1^{\mathrm{e}})^{-1}$ values for the various carbon atoms. Although it would appear that the oxygen atoms on C-6, C-3,

NOTE 337

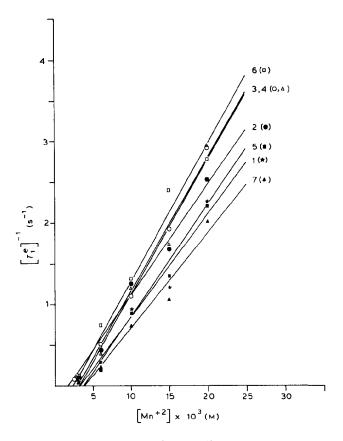


Fig. 1. The effects of added Mn^{2+} on the ^{13}C , T_{1}^{e} values of compound 1. [The concentration of 1 was M (in $H_{2}O$), at $pH \sim 7.0$. The numbers on the graph refer to specific carbon atoms of 1.]

and C-4 may be weak binding-sites for Mn²⁺, the carbon atoms that do not bear hydroxyl groups (C-7, C-1, and C-5) appear to be the least affected.

Fig. 2 shows a picture somewhat similar to that observed in Fig. 1. The ¹³C, electron-nuclear relaxation-rates of carbon atoms bearing no hydroxyl group (C-1, C-5, and C-7) appear to be the least affected by the increased additions of Mn²⁺. The electron-nuclear relaxation-rates of C-2 and C-3 may be somewhat affected by added Mn²⁺, and that of C-6 seems to be noticeably affected. This indicates that a "relatively" strong, interaction site exists near C-6 (probably O-6), and weaker interaction sites are present near C-2 and C-3, involving their respective oxygen atoms.

The results obtained from this work are similar to those obtained for metal ion-D-galactopyranose by using D-galactosylated peptides. The minor differences that do exist probably result from the fact that amino acids may mediate Mn²⁺ binding in the vicinity of C-1. The use of electron-nuclear relaxation-rates to determine Mn²⁺ binding to various polyols may be put to better use if a polyol is chosen that has a more appropriate, metal-ion-binding geometry⁹.

338 NOTE

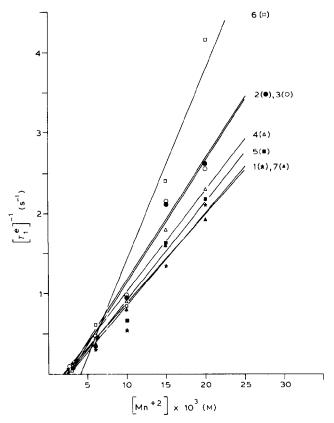


Fig. 2. The effects of added Mn^{2+} on the ¹³C, T_1^e values of compound 2. [The concentration of 2 was M (in H₂O), at pH ~7.0. The numbers on the graph refer to specific carbon atoms of 2.]

REFERENCES

- 1 M. E. DAMAN AND K. DILL, Carbohydr. Res., 102 (1982) 47-57.
- 2 M. E. DAMAN AND K. DILL, Carbohydr. Res., 111 (1983) 205-214.
- 3 K. DILL, M. E. DAMAN, R. L. BATSTONE-CUNNINGHAM, J. LACOMBE, AND A. A. PAVIA, *Carbohydr. Res.*, 123 (1983) 123–135.
- 4 K. DILL, M. E. DAMAN, R. L. BATSTONE-CUNNINGHAM, M. DENARIÉ, AND A. A. PAVIA, *Carbohydr. Res.*, 123 (1983) 137–144.
- 5 K. DILL, M. E. DAMAN, R. L. BATSTONE-CUNNINGHAM, M. DENARIÉ, AND A. A. PAVIA, *Carbohydr. Res.*, 124 (1983) 11–22.
- 6 K. DILL, M. E. DAMAN, E. DECOSTER, J. M. LACOMBE, AND A. A. PAVIA, Org. Magn. Reson., in press.
- 7 W. G. ESPERSEN AND R. B. MARTIN, J. Phys. Chem., 80 (1976) 161-164.
- 8 G. C. LEVY AND J. J. DECHTER, J. Am. Chem. Soc., 102 (1980) 6191-6196.
- 9 S. J. ANGYAL, Tetrahedron, 30 (1974) 1695-1702.